Let W[u, v](x) denote the Wronskian determinant of the functionsu(x) and v(x). Assuming that ui(x), vi(x), wi(x), i = 1, 2 aredifferentiable, find W[u1v1w1, u2v2w2](x) in terms of W[u1, u2](x),W[v1, v2](x), W[w1, w2](x), without expanding the determinants

匿名用户 最后更新于 2021-12-01 19:09 数学类Mathematics

Let W[u, v](x) denote the Wronskian determinant of the functionsu(x) and v(x). Assuming that ui(x), vi(x), wi(x), i = 1, 2 aredifferentiable, find W[u1v1w1, u2v2w2](x) in terms of W[u1, u2](x),W[v1, v2](x), W[w1, w2](x), without expanding the determinants youencounter, explaining clearly which preperties of determinants youutilised

已邀请: