Prove the Frobenius norm ∥·∥F is unitarily invariant:
1 Let A ∈ Cm×n with A = [α1,α2,··· ,αn]. Then∥A∥2F =∑ni=1∥αi∥22
2 ∥A∥2F = Tr(AHA) =∑ni=1 λi(AHA)
3 Let A ∈ Cm×n. For any unitary matrices U ∈Um×m and V ∈ Vn×n, we have ∥A∥F =∥UA∥F = ||AH ||F =∥AV∥F = ∥UAV∥F .
The Frobenius norm ||.lle is unitarily invariant: 1 Let A E Cmxn with A = [Q1, A2, , Qn). Then n ||1|| = Ž ||0:1/12 i=1 n i=1 0 * ||A||= Tr(AHA) = Ï 1;(AHA) Let A E CMX For any unitary matrices U E Umxm and V EVnxn, have || A||| = ||UA||| = || A ||| = ||AV || | = ||UAV ||E - 3 we
没有找到相关结果