Prove The Frobenius Norm ∥·∥F Is Unitarily Invariant: 1 Let A ∈ Cm×n With A = [α1,α2,··· ,αn]. Then ∥A∥2F =∑ni=1 ∥αi∥22 2 ∥A∥2F = Tr(AHA) = ∑ni=1 λi(AHA) 3 Let A ∈ Cm×n. For Any Unitary Matrices U ∈ Um×m And V ∈ Vn×n, We Have ∥A∥F = ∥UA∥F = ||AH ||F = ∥AV

匿名用户 最后更新于 2021-12-01 19:07 数学类Mathematics

Prove the Frobenius norm ∥·∥F is unitarily invariant:
1 Let A ∈ Cm×n with A = [α1,α2,··· ,αn]. Then∥A∥2F =∑ni=1∥αi22
2 ∥A∥2F = Tr(AHA) =∑ni=1 λi(AHA)
3 Let A ∈ Cm×n. For any unitary matrices U ∈Um×m and V ∈ Vn×n, we have ∥A∥F =∥UA∥F = ||AH ||F =∥AV∥F = ∥UAV∥F .

The Frobenius norm ||.lle is unitarily invariant: 1 Let A E Cmxn with A = [Q1, A2, , Qn). Then n ||1|| = Ž ||0:1/12 i=1 n i=1 0 * ||A||= Tr(AHA) = Ï 1;(AHA) Let A E CMX For any unitary matrices U E Umxm and V EVnxn, have || A||| = ||UA||| = || A ||| = ||AV || | = ||UAV ||E - 3 we

已邀请: