请用Mathematica解答

匿名用户 最后更新于 2022-01-18 20:33 数学类Mathematics

ed862bcb26ed9d4e28ef7464d7c441e1.png

Consider the following conditions for an integer m:1.m is divisible by 52.m is divisible by 133.m is a positive cube (i.e.has the form n for some positive integer n)4.m is a sum of positive squares (i.e.has the form p2+g2 for some integers p,q withp,q≥1)Find the number of integers in the range [1,10 such that(a)1.and 2.are true but 3.and 4.are false,(b)3.and 4.are true but 1.and 2.are false,(c)all four conditions are true,(d)all four conditions are false.For example,for the number 10855,1.and 2.are true while 3.and 4.are false (it's notobvious that 10855 is not a sum of positive squares).

已邀请: